Vishay Sfernice

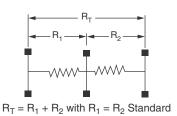
Dual Value Chip Resistors, Center Tap

Actual Size

Chromium silicon thin film is very well suited to produce high density and high ohmic value resistor chips. Performances and sizes are greatly improved compared to Thick Film counterparts. The center tap configuration offers a greater flexibility for hybrid layout design.

FEATURES

- Center tap feature
- Small size 30 mil x 30 mil
- Very high ohmic values (up to 5 $M\Omega$)
- Good stability 0.1 % (2000 h, rated power, at + 70 °C)
- Wirebondable


ROHS

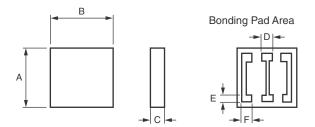
TYPICAL PERFORMANCE

	ABS	TRACKING
TCR	100 ppm/°C	5 ppm/°C
	ABS	RATIO
TOL.	0.5 %	0.5 %

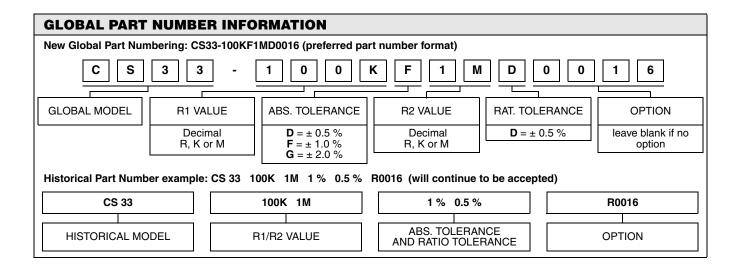
SCHEMATIC

STANDARD ELECTRICAL SPECIFICATIONS				
TEST		SPECIFICATIONS	CONDITIONS	
MATERIAL		PASSIVATED CHROMIUM SILICON		
Resistance range	е	10 kΩ to 5 MΩ	for $R_T = R_1 + R_2$	
TCR:	Tracking	± 5 ppm/°C	- 55 °C to + 155 °C	
	Absolute	± 100 ppm/°C (± 50 ppm/°C on request)	- 55 °C to + 155 °C	
Ohmic value	Ratio	1/1 standard (unequal values: please consult)		
Tolerance:	Absolute	± 0.5 %, ± 1 %, ± 2 %		
	Matching	± 0.5 % standard		
Power rating		250 mW at + 25 °C, 125 mW at + 70 °C, 50 mW at + 125 °C		
Stability		± 0.1 % typical, ± 0.2 maximum	2000 h at + 70 °C under Pn	
Voltage coefficie	nt	0.1 ppm/V		
Working voltage		100 V _{DC} on R _T		
Operating tempe	erature range	- 55 °C to + 155 °C		
Storage tempera	ture range	- 55 °C to + 155 °C		
Noise		< - 20 dB typical	MIL-STD-202 Method 308	
Thermal EMF		< 0.01 μV/°C		
Shelf life stability		200 ppm	1 year at + 25 °C	

^{*} Please see document "Vishay Green and Halogen-Free Definitions (5-2008)" http://www.vishay.com/doc?99902



Dual Value Chip Resistors, Center Tap


Vishay Sfernice

DIMENSIONS

DIMENSION	INCHES	MILLIMETERS
A	0.03 ± 0.004	0.76 ± 0.10
В	0.03 ± 0.004	0.76 ± 0.10
С	0.01 ± 0.015	0.25 ± 0.40
D	0.004	0.10
Е	0.006	0.15
F	0.006	0.15

MECHANICAL SPECIFICATIONS		
Resistive element	Chromium Silicon	
Passivation	Silicone Nitride	
Substrate material	Silicon (Consult Vishay for Al ₂ O ₃)	
Bonding pads	Aluminum	

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Revision: 18-Jul-08

Document Number: 91000 www.vishay.com